Soal dan jawaban Pengetahuan Bahan Elektrik






Nama   :           Diana Zulfah
Kelas   :           2IB04
NPM   :           13414019
Tugas   :           Pengetahuan Bahan Elektrik
Dosen  :           Mochammad Karjadi

Soal :
1.      Ringkaslah bahan konduktor dan berikan contohnya untuk masing-masing jenisnya !
2.      Sebutkan contoh penggunaan bahan isolator gelas atau kaca yang ada pada dunia kelistrikan dan rumah tangga !
3.      Bagaimana proses pembuatan bahan isolator porselen, Jelaskan ada berapa cara dan berikan contoh bahan yang termasuk isolator porselen serta penggunaannya di dunia kelistrikkan maupun yang lain.
JAWABAN :

1.      Bahan - bahan yang bersifat konduktor ialah bahan - bahan yang mudah mengalirkan arus listrik jika dihubungkan dengan sumber tegangan. 

1.1  Jenis Bahan Konduktor
Bahan-bahan yang dipakai untuk konduktor harus memenuhi persyaratan-persyaratan sebagai berikut:
1. Konduktifitasnya cukup baik.
2. Kekuatan mekanisnya (kekuatan tarik) cukup tinggi.
3. Koefisien muai panjangnya kecil.
4. Modulus kenyalnya (modulus elastisitas) cukup besar.

Bahan-bahan yang biasa digunakan sebagai konduktor, antara lain:
1. Logam biasa, seperti: tembaga, aluminium, besi, dan sebagainya.
2. Logam campuran (alloy), yaitu sebuah logam dari tembaga atau aluminium yang
   diberi campuran dalam jumlah tertentu dari logam jenis lain, yang gunanya untuk      menaikkan kekuatan mekanisnya.
3. Logam paduan (composite), yaitu dua jenis logam atau lebih yang dipadukan  dengan cara kompresi, peleburan (smelting) atau pengelasan (welding).

1.2  Klasifikasi Konduktor
      1.2.1 Klasifikasi konduktor menurut bahannya:
1.      kawat logam biasa, contoh:
a. BBC (Bare Copper Conductor).
b. AAC (All Aluminum Alloy Conductor).
2.      kawat logam campuran (Alloy), contoh:
a. AAAC (All Aluminum Alloy Conductor)
b. kawat logam paduan (composite), seperti: kawat baja berlapis tembaga (Copper Clad Steel) dan kawat baja berlapis aluminium (Aluminum Clad Steel).
3.      kawat lilit campuran, yaitu kawat yang lilitannya terdiri dari dua jenis logam atau lebih,
contoh: ASCR (Aluminum Cable Steel Reinforced).

1.2.2 Klasifikasi konduktor menurut konstruksinya:
1.      kawat padat (solid wire) berpenampang bulat.
2.      kawat berlilit (standart wire) terdiri 7 sampai dengan 61 kawat padat yang dililit menjadi satu, biasanya berlapis dan konsentris.
3.      kawat berongga (hollow conductor) adalah kawat berongga yang dibuat untuk mendapatkan garis tengah luar yang besar.

1.2.3. Klasifikasi konduktor menurut bentuk fisiknya:
1.      konduktor telanjang.
2.       konduktor berisolasi, yang merupakan konduktor telanjang dan pada bagian luarnya diisolasi sesuai dengan peruntukan tegangan kerja, contoh:
a. Kabel twisted.
b. Kabel NYY
c. Kabel NYCY
d. Kabel NYFGBY

1.3  Karakteristik Konduktor
Ada 2 (dua) jenis karakteristik konduktor, yaitu:
1.      karakteristik mekanik, yang menunjukkan keadaan fisik dari konduktor yang menyatakan kekuatan tarik dari pada konduktor (dari SPLN 41-8:1981, untuk konduktor 70 mm2 berselubung AAAC-S pada suhu sekitar 30° C, maka kemampuan maksimal dari konduktor untuk menghantar arus adalah 275 A).
2.      karakteristik listrik, yang menunjukkan kemampuan dari konduktor terhadap arus listrik yang melewatinya (dari SPLN 41-10 : 1991, untuk konduktor 70 mm2 berselubung AAAC-S pada suhu sekitar 30o C, maka kemampuan maksimum dari konduktor untuk menghantar arus adalah 275 A).
1.3.1        Konduktivitas listrik
Sifat daya hantar listrik material dinyatakan dengan konduktivitas, yaitu kebalikan dari resistivitas atau tahanan jenis penghantar, dimana tahanan jenis penghantar tersebut didefinisikan sebagai:
R . A
ρ = ----------
l
dimana;
A : luas penampang (m2)
l : Panjang penghantar (m)
Ώ : tahanan jenis penghantar (ohm.m)
R : tahanan penghantar (ohm)
ρ : konduktivitas

1
a = ------
ρ

Menyatakan kemudahan – kemudahan suatu material untuk meneruskan arus listrik. Satuan konduktivitas adalah (ohm meter). Konduktivitas merupakan sifat listrik yang diperlukan dalam berbagai pemakaian sebagai penghantar tenaga listrik dan mempunyai rentang harga yang sangat luas. Logam atau material yang merupakan penghantar listrik yang baik, memiliki konduktivitas listrik dengan orde 107 (ohm.meter) -1 dan sebaliknya material isolator memiliki konduktivitas yang sangat rendah, yaitu antara 10-10 sampai dengan 10-20 (ohm.m)-1. Diantara kedua sifat ekstrim tersebut, ada material semi konduktor yang konduktivitasnya berkisar antara 10-6 sampai dengan 10-4 (ohm.m)-1. Berbeda pada kabel tegangan rendah, pada kabel tegangan menengah untuk pemenuhan fungsi penghantar dan pengaman terhadap penggunaan, ketiga jenis atau sifat konduktivitas tersebut diatas digunakan semuanya.

------------------------------------------------------------------------------------------
Logam Konduktivitas listrik ohm meter
Perak ( Ag ) ………………………. 6,8 x 107
Tembaga ( Cu ) ………………….. 6,0 x 107
Emas ( Au ) …………………….. .. 4,3 x 107
Alumunium ( Ac ) ………………. .. 3,8 x 107
Kuningan ( 70% Cu – 30% Zn )… 1,6 x 107
Besi ( Fe ) ………………………… 1,0 x 107
Baja karbon ( Ffe – C ) …………. 0,6 x 107
Baja tahan karat ( Ffe – Cr ) …… 0,2 x 107

Tabel 1. Konduktivitas Listrik Berbagai Logam dan Paduannya Pada Suhu Kamar.

1.3.2 Kriteria mutu penghantar
Konduktivitas logam penghantar sangat dipengaruhi oleh unsur – unsur pemadu, impurity atau ketidaksempurnaan dalam kristal logam, yang ketiganya banyak berperan dalam proses pembuatan pembuatan penghantar itu sendiri. Unsur – unsur pemandu selain mempengaruhi konduktivitas listrik, akan mempengaruhi sifat – sifat mekanika dan fisika lainnya. Logam murni memiliki konduktivitas listrik yang lebih baik dari pada yang lebih rendah kemurniannya. Akan tetapi kekuatan mekanis logam murni adalah rendah.
Penghantar tenaga listrik, selain mensyaratkan konduktivitas yang tinggi juga membutuhkan sifat mekanis dan fisika tertentu yang disesuaikan dengan penggunaan penghantar itu sendiri.

Selain masalah teknis, penggunaan logam sebagai penghantar ternyata juga sangat ditentukan oleh nilai ekonomis logam tersebut dimasyarakat. Sehingga suatu kompromi antara nilai teknis dan ekonomi logam yang akan digunakan mutlak diperhatikan. Nilai kompromi termurahlah yang akan menentukan logam mana yang akan digunakan. Pada saat ini, logam Tembaga dan Aluminium adalah logam yang terpilih diantara jenis logam penghantar lainnya yang memenuhi nilai kompromi teknis ekonomis termurah.

Dari jenis–jenis logam penghantar pada tabel 1. diatas, tembaga merupakan penghantar yang paling lama digunakan dalam bidang kelistrikan. Pada tahun 1913, oleh International Electrochemical Comission (IEC) ditetapkan suatu standar yang menunjukkan daya hantar kawat tembaga yang kemudian dikenal sebagai International Annealed Copper Standard (IACS). Standar tersebut menyebutkan bahwa untuk kawat tembaga yang telah dilunakkan dengan proses anil (annealing), mempunyai panjang 1m dan luas penampang 1mm2, serta mempunyai tahanan listrik (resistance) tidak lebih dari 0.017241 ohm pada suhu 20oC, dinyatakan mempunyai konduktivitas listrik 100% IACS.

Akan tetapi dengan kemajuan teknologi proses pembuatan tembaga yang dicapai dewasa ini, dimana tingkat kemurnian tembaga pada kawat penghantar jauh lebih tinggi jika dibandingkan pada tahun 1913, maka konduktivitas listrik kawat tembaga sekarang ini bisa mencapai diatas 100% IACS.
Untuk kawat Aluminium, konduktivitas listriknya biasa dibandingkan terhadap standar kawat tembaga. Menurut standar ASTM B 609 untuk kawat aluminium dari jenis EC grade atau seri AA 1350(*), konduktivitas listriknya berkisar antara 61.0 – 61.8% IACS, tergantung pada kondisi kekerasan atau temper. Sedangkan untuk kawat penghantar dari paduan aluminium seri AA 6201, menurut standar ASTM B 3988 persaratan konduktivitas listriknya tidak boleh kurang dari 52.5% IACS. Kawat penghantar 6201 ini biasanya digunakan untuk bahan kabel dari jenis All Aluminium Alloy Conductor (AAAC).

Disamping persyaratan sifat listrik seperti konduktivitas listrik diatas, kriteria mutu lainnya yang juga harus dipenuhi meliputi seluruh atau sebagian dari sifat – sifat atau kondisi berikut ini, yaitu:
a. komposisi kimia.
b. sifat tarik seperti kekuatan tarik (tensile strength) dan regangan tarik (elongation).
c. sifat bending.
d. diameter dan variasi yang diijinkan.
e. kondisi permukaan kawat harus bebas dari cacat, dan lain-lain.


2.      Pemanfaatan Kaca Pemakaian kaca pada keteknikan antara lain :
1)      Pembuatan bola lampu
2)      tabung elektronik
3)      penyangga filamen Titik pelunakan kaca ini tidak terlalu tinggi, muai panjangnya hendaknya dibuat mendekati muai panjang logam maupun paduannya yang disangga. Logam yang dimaksud adalah wolfram, molybdenum
4)      Untuk bahan dielektrik pada kapasitor Minos adalah salah satu jenis kaca permeabilitas relatif tinggi yaitu 7,5, sudut kerugian dielektrik (tan δ) kecil pada frekuensi 1MHz, suhu 20oC, tan δ = 0.0009 pada frekuensi 1MHz, suhu 200oC, tan δ = 0,0012. Kaca minos mempunyai α = 8,2 . 107 per oC. massa jenis 3,6 g/cm3.
5)      Untuk membuat berbagai isolator Misalnya isolator penyangga, isolator antena, isolator len, dan isolator bushing. Untuk penggunaan ini, selain sifat kelistrikan yang baik juga dituntut mempunyai kekuatan mekanis yang tinggi, tahan terhadap perubahan suhu yang mendadak, dan tahan terhadap pengaruh kimia. Jenis kaca yang digunakan untuk keperluan ini antara lain kaca silika, pireks kalium-natrium.
6)      Pelapisan logam Salah satu jenis kaca adalah enamel (bukan enamel vernis). Enamel dalam hal ini dapat digunakan untuk pelapisan logam atau benda lain sejenisnya, misalnya dudukan lampu, reflektor, barang-barang dekoratif yang tujuannya untuk mendapatkan permukaan yang lebih bagus. Enamel juga dapat digunakan sebagai isolasi listrik, yaitu untuk melapisi resistor tabung (kawat yang dililitkan pada tabung tersebut adalah resistor, antara lain : nikrom, konstantan). Dalam hal ini, enamel dileburkan dan kemudian tabung keramik yang sudah dililiti kawat tersebut dicelupkan sehingga sela-sela di antara lilitan diisi enamel. Tujuannya di samping untuk mengisolasi lilitan, juga melindungi lilitan terhadap uap, debu, dan oksidasi udara pada suhu kerja yang tinggi. Enamel dipabrikasi dengan meleburkan komponen-komponennya yang halus, kemudian dituangkan sedikit demi sedikit dalam keadaan meleleh ke dalam air yang dingin hingga membentuk seperti bola, selanjutnya dihaluskan menjadi bubuk. Pemakaian enamel untuk pelapisan dapat dilakukan dengan cara kering maupun basah. Pada pelapisan kering, perangkat yang akan dilapisi dipanasi hingga suhu tertentu kemudian dimasukkan ke dalam bubuk enamel. Dengan demikian maka bubuk di sekelilingnya akan meleleh dan melapisi perangkat tersebut. Proses ini diulang berkali-kali hingga diperoleh ketebalan lapisan yang diinginkan. Pada pelapisan basah, mula-mula enamel diaduk dengan air sehingga menjadi bubur enamel yang digunakan untuk melapisi perangkat yang dimaksud. Selanjutnya perangkat yang sudah dilapis tersebut dikeringkan, lalu dipanaskan dengan oven sehingga enamel meleleh dan dengan demikian melapisi perangkat. Untuk keperluan pelapisan ini, koefisien muai panjang enamel harus diusahakan sama dengan muai panjang perangkat yang dilapisi. Komponen elamen untuk pelapisan resistor tabung (kaca boron-timah hitam dengan mangan peroksida) adalah sangat sederhana yaitu : 27% PbO, 70% H3BO3 dan 3% MnO2. Titik lebur enamel ± 600oC. Enamel akan hilang warnanya dan sebagian akan melarut jika direndam dalam air dalam waktu yang lama. Untuk menambah ketahanan enamel terhadap air dan panas biasanya ditambahkan pasir kuarsa. Sedangkan untuk menambahkan kemampuan lekatnya, enamel yang digunakan untuk melapisi baja atau besi tulang, ditambah Ni dan Co.

3.      Pengertian Porselin Porselin adalah bahan isolasi kelompok keramik yang sangat penting dan luas penggunaannya. Istilah bahan-bahan keramik adalah digunakan untuk semua bahan anorganik yang di bakar dengan pembakaran pada suhu tinggi dan bahan asli berubah substansinya.
Porselin terbuat dari tanah liat china (china clay) yang terdapat di alam dalam bentuk alumunium silikat. Bahan tersebut dicampur kaolin, felspar dan quarts. Kemudian campuran ini dipanaskan dalam tungku yang suhunya dapat diatur. Bahan porselin dibakar sampai keras, halus mengkilat dan bebas dari lubang-lubang. Untuk mendapatkan sifat-sifat listrik dan sifat mekanis yang baik, harus dipilih suhu pemrosesan bahan isolasi yang sesuai, karena jika bahan isolasi diproses pada suhu yang agak rendah, sifat mekanisnya baik, tetapi bahan tetap berlubang-lubang. Sedangkan jika diproses pada suhu yang tinggi, lubang-lubangnya berkurang tetapi bahan menjadi rapuh. Isolator porselin yang baik secara mekanis mempunyai kuat dielektrik kira-kira 60 kV/cm, kuat tekan dan kuat tariknya masing-masing 70.000 kg/cm2 dan 500 kg/cm2.
1)      Proses Pembuatan Porselin Proses pembuatan perangkat dari porselin secara garis besar yaitu, setelah tanah liat dibersihkan dari kotoran-kotoran misalnya kerikil, kemudian dicampur dengan air hingga homogen (tetapi tidak terlalu encer seperti bubur). Selanjutnya adalah tahap pembentukan, yaitu dengan putaran, penekanan, cetakan, dan ekstrusi. Selanjutnya setelah perangkat terbentuk, dikeringkan lalu diadakan pelapisan dengan gelas (glazing) dan terakhir adalah tahap pembakaran. Perlu di ingat bahwa proses pembuatan perangkat dari keramik sejak masih basah hingga selesai di bakar akan terjadi pengecilan dimensi. Sedangkan pada proses pelapisan dengan gelas dan pembakaran menentukan sekali kualitas produk. Pada pelapisan dengan gelas, kaca halus atau bahan dasar kaca atau campuran keduanya dipanaskan hingga meleleh, kemudian digunakan melapisi perangkat yang dikehendaki dengan cara mencelupkan benda atau permukaan yang diinginkankan untuk dilapisi. Dengan pelapisan gelas seperti ini digunakan untuk memperkuat dan sekaligus menghiasi permukaan, akan menjadikan produk porselin makin sedikit kemampuannya menyerap air, mudah dibersihkan, menghilangkan retak-retak yang ada di permukaan. Dengan pelapisan gelas, arus bocor yang melalui permukaan isolator akan lebih kecil terutama pada keadaan basah dan sekaligus dapat menaikkan tegangan terjadinya busur api (flashover). Seperti pada penggunan kaca bersama-sama dengan logam koefisien termal antar pelapis dan yang dilapisi harus sama. Jika gelas pelapisnya mempunyai a lebih kecil daripada a yang dilapiskan, akan terjadi kompresi pada ketika suhu rendah. Sedangkan jika kaca pelapis mempunyai a yang lebih besar dari pada a yang dilapisi pada waktu terkena suhu diatas normal, pelapisnya akan retak (bentuk retaknya kecil memanjang) yang disebut crazing. Retak ini akan menurunkan kekuatan mekanik benda. Untuk pelapisan benda-benda porselin yang besar dapat dilakukan dengan menuangkan bahan pelapis pada permukaannya. Selanjutnya setelah benda itu dilapis, dikeringkan dan dilakukan pembakaran. Maksud dari pembakaran adalah untuk mendapatkan kekuatan mekanik, kemampuan isolasi dan ketahanan terhadap air yang lebih tinggi. Selama pembakaran, struktur kristal dari tanah liat (bahan dasar keramik) akan berubah, air yang dikandung akan hilang. Selama pembakaran juga akan terjadi lubang-lubang kecil. Untuk menutup lubang-lubang tersebut digunakan bahan yang disebut feldpar. Feldpar selama pembakaran akan meleleh sehingga mengisi lubang-lubang kecil yang terjadi tersebut sekaligus berfungsi sebagai bahan penguat. Untuk pembuatan isolator porselin diperlukan suhu berkisar antara 13000 C hingga 15000 C dalam jangka waktu 20 hingga 70 jam. Kenaikan suhu dari normal hingga suhu diatas adalah perlahan-lahan. Setelah mencapai suhu yang diinginkan, pendinginannya dilakukan secara perlahan-lahan sebelum di keluarkan dari oven. Untuk pembakaran atau pemanasan dalam oven dapat digunakan solar, gas, batu bara atau listrik. Cara pembakaran pada benda yang akan di buat (sebelumnya dikeringkan) diletakkan dalam ruang bakar agar tidak berhubungan langsung dengan nyala api atau lilitan elemen pemanas yang digunakan pemanas listrik. Hal ini untuk menghindari pemanasan yang tidak merata dan pembentukan jelaga. Bagian-bagian dasar dari benda tidak perlu dilapis dengan gelas agar tidak melekat dengan dasar ruang pembakaran jika sudah dingin.
Ada dua macam oven untuk pembakaran porselin, yaitu jenis pemanggang (kiln) dan jenis terowongan. Pada oven jenis pemanggang, proses pembakaran dan pendinginan dilakukan secara serentak untuk beberapa benda kerja. Untuk industri kecil, oven ini tepat digunakan. Oven jenis kedua yaitu jenis terowongan pemanggangan. Dalam oven ini, benda yang dipanaskan dilewatkan melalui oven secara perlahan-lahan. Panjang oven ini dapat mencapai 100 meter, terdiri dari tiga bagian proses yaitu : daerah pemanasan, daerah pemanggang dan daerah pendinginan. Suhu tertinggi adalah di daerah tengah, yaitu daerah pemanggang dan bagian pinggir lebih dingin. Dengan demikian selama perjalanan benda-benda kerja akan terjadi pemanasan dan pendinginan secara bertahap dan perlahan-lahan. Karena pada oven jenis terowongan ada bagian yang selalu begerak (untuk menempatkan benda kerja), maka pemanasan terhadap benda kerja adalah terus menerus, demikian pula pengambilan bagi benda kerja yang selesai dipanasi tidak perlu memadamkan oven. Pengecilan yang terjadi selama proses pembuatan benda porselin dari keadaan basah hingga pembakaran adalah sebesar 20%. Karena itu untuk pembuatan benda porselin pada waktu mentah harus lebih besar dari ukuran akhir yang dikehendaki. Namun, pada prakteknya sulit didapat ukuran yang presisi, karena hal ini dipengaruhi komposisi bahan dan kondisi pembakarannya. Umumnya produk-produk porselin toleransi yang masih dapat ditolerir berkisar antara 2 hingga 5%. Benda-benda porselin disarankan tidak disambung dengan menggunakan sekrup, tetapi untuk menyambungnya menggunakan lem, semen atau diikat dengan logam. 

2)      Sifat-sifat poselin adalah sebagai berikut :
a.       Massa jenisnya berkisar antara 2,3 hingga 2,5 g/cm3.
b.      Koefisien muai panjang (ά)
c.       10-6 hingga 4,5 . 10-6 per 0C. Hal ini perlu mendapatkan perhatian jika dilem dengan semen atau diikat dengan logam, karena ά semen = 11 . 10-6 per 0C, ά baja = 14 . 10-6 per 0C. 3. Kekuatan tekan porselin adalah 4000 hingga 6000 kg/cm2.
d.      Kekuatan tarik 300 hingga 500 kg/cm2 untuk yang menggunakan pelapis, 200 hingga 300 kg/cm2 yang tanpa pelapis.
e.       Kekuatan tekuk 80 hingga 100 kg/cm2. Porselin lebih regas daripada kaca.

3)      sifat kelistrikan porselin antara lain :
a.       Tegangan tembus berkisar antara 10 hingga 30 kV/mm.
b.      Resistifitas 1011 hingga 1014 Ώ cm.
c.       Permitifitas (ε) berkisar antara 6 hingga 7, tan σ 0,015 hingga 0,02.
d.      Sudut kerugian dielektrik akan naik jika suhu dinaikkan. Penggunaan isolator pada tegangan tinggi, yang juga harus menjadikan pertimbangan adalah tegangan pelepasan (discharge-voltage). Tegangan pelepasan adalah tegangan yang dikenakan pada isolator yang menyebabkan mengalirnya arus listrik melalui permukaan di antara elektroda-elektroda. Dalam banyak kasus, pelepasan ini menyebabkan busur api pada permukaan isolator. Busur api ini dapat terjadi pada keadaan kering maupun basah (curah hujan 4,5 hingga 5,5 mm/menit). Pada pengujian busur api dilaboratorium kondisi ini dapat diciptakan, untuk mengetahui kelayakan suatu isolator digunakan dilapangan. Isolator gantung atau isolator tarik pada tegangan tinggi (bentuknya seperti cakram) pada bagian bawahnya dibuat berlekuk-lekuk agar air hujan tidak merambat melaluinya. Banyak isolator gantung atau isolator tarik tergantung besarnya tegangan yang diisolasi. Contoh : untuk tegangan 110 kV diperlukan 10 hingga 12 isolator, sedangkan untuk 400 kV terdiri dari 20 hingga 24 isolator. Hubungan atau kolerasi antara besarnya tegangan kerja dengan banyaknya isolator yang diperlukan.

4)      Kelebihan dan Kekurangan Porselin Beberapa kelebihan isolator porselin/keramik antara lain:
a.       Stabil, adanya ikatan ionik yang kuat antaratom yang menyusun keramik, seperti silikon dan oksigen dalam silica dan silicates, membuat strukturnya sangat stabil dan biasanya tidak mengalami degradasi karena pengaruh lingkungan. Ini berarti bahwa isolator keramik tidak akan rusak oleh pengaruh UV, kelembaban, aktivitas elektrik, dsb.
b.      Mempunyai kekuatan mekanik yang baik, merupakan ciri alami bahwa bahan keramik mempunyai sifat mekanik yang kuat, sehingga pada pemakaian isolator porselin sebagai terminal kabel, bushing, dan arrester surya tidak memerlukan material lain untuk meyokongnya.
c.       Harganya relatif murah, penyusun porselin seperti clay, feldspar dan quartz harganya relatif murah dan persediaannya berlimpah.
d.      Tahan lama, proses pembuatan porselin yang terdiri dari beberapa proses seperti pencetakan dan pembakaran dalam mengurangi kadar air menyebabkan porselin mempunyai sifat awet. 

5)      Contoh kegunaan keramik :
a.       Keramik dengan campuran semen dan logam digunakan untuk pelapis pelindung panas pada pesawat ulang-alik dan satelit.
b.      Butiran uranium termasuk keramik yang digunakan untuk pembangkit listrik tenaga nuklir. Butiran ini dibentuk dari gas uranium hexafluorida (UF6).
c.       Keramik berbasis feldspar dan tanah liat digunakan pada industri bahan bangunan.
d.      Keramik juga digunakan sebagai coating (pelapis) untuk mencagah korosi. Keramik yang digunakan adalah jenis enamel. Peralatan rumah tangga yang menggunakan pelapisan enamel ini diantaranya adalah kulkas, kompor gas, mesin cuci, mesin pengering.

Comments